PAGE
9
01/05/2018
Case Study Part 3 Assignment
Page

Case Study Part 3 Assignment
The assignment for part 3 of the case study extends your learning experience from units 8 and 9. You will be challenged to develop SQL statements for major business intelligence needs. Some of the statements will be more complex than you encountered in unit 9 due to the larger schema size and relationships among fact tables.
As preparation for this assignment, you should review material about the GROUP BY clause as well as analytic functions. You need to sharpen skills for query formulation involving row summaries as a foundation for this assignment. You also should review concepts and examples involving analytical functions in unit 9.

For this assignment, you should understand business intelligence needs and relate the needs to the data warehouse tables. For business intelligence needs, you should read the associated document providing background about analytical query formulation. After you are clear about the database representation for a problem, you should then begin writing SQL statements. To help structure your query formulations, you should create basic statements without the analytic function elements. After your basic statements execute correctly, you can then revise them for analytic function elements.
Base Queries

The base queries involve two broad areas, revenues/costs and quality control. To facilitate reuse of base queries with analytic function requirements, CREATE VIEW statements are required for some of the base queries.

Table 1: Base Query (BQ) Requirements
	Query (Area)
	Result Columns
	Comments

	BQ1: Location/Sales class summary for job quantity and amount (revenue/costs)
	Location id, location name, sales class id, sales class description, year of job contract date, month of job contract date, base price of sales class, sum of quantity ordered, sum of job amount
	Job amount defined as quantity ordered times unit price; combine with time dimension table on contract date FK

	BQ2: Location invoice revenue summary (revenue/costs)
	Job id, location id, location name, job unit price, job order quantity, year of contract date, month of contract date, sum of invoice amount, sum of invoice quantity
	Need to combine some fact tables; Contract year/month used to match revenues and costs; Define a CREATE VIEW statement in addition to the SELECT statement.

	BQ3: Location subjob cost summary

(revenue/costs)
	Job id, location id, location name, year of contract date, month of contract date, sum of labor cost, sum of material cost, sum of machine cost, sum of overhead costs, sum of total costs, sum of quantity produced, unit cost
	Need to combine some fact tables; machine costs computed as machine hours times rate per hour for machine; create a view; Contract year/month used to match revenues and costs; Unit cost defined as total costs / sum of quantity produced

	BQ4: Returns by location and sales class (quality control)
	Location id, location name, sales class id, sales class description, year of invoice sent date, month of invoice sent date sum of quantity returned, sum of dollar amount of returns
	Return quantity defined as quantity shipped minus quantity invoiced; condition for positive return quantity

	BQ5: Last shipment delays involving date promised (quality control)
	Job id, location id, location name, sales class id, sales class description, time id of the date promised for the job, time id of the last shipment date, order quantity in the job, sum of shipped quantity after job promised date, difference in business days between last shipment date and promised date
	Condition for last shipment date later than job promised date; use function provided for computing difference in business days; requires a nested query in the FROM clause to determine first shipment date for a job; Define a CREATE VIEW statement in addition to the SELECT statement; See SELECT statement on page 4

	BQ6: First shipment delays involving shipped by date (quality control)
	Job id, Location id, location name, sales class id, sales class description, time id of the shipped by date of the job, time id of the first shipment date, difference in business days between first shipment date and contractual shipped by date
	Condition for first shipment date later than job shipped by date; use function provided for computing difference in business days; a nested query in the FROM clause to determine first shipment date for a job; Define a CREATE VIEW statement in addition to the SELECT statement; See SELECT statement on page 4

A complexity in some base queries is the need to combine fact tables. Typically, data warehouse queries involve a fact table combined with many dimension tables. Because some base queries compare quantities associated with different business processes (such as job and invoice details), combining multiple fact tables is necessary. Although the data warehouse design does not enforce relationships among fact tables, you can still use these columns (W_Sub_Job_F.Job_Id, W_Job_Shipment_F.Sub_Job_Id, W_Job_Shipment_F.Invoice_Id, and W_Lead_F.Job_Id) to navigate among fact tables.
The base queries for contractual delays (first shipment delays (BQ5) and last shipment delays (BQ6)) are complex. To help with formulation, you can use these queries in the FROM clauses. You can use the alias X1 in the outer query to reference columns from the inner query in the FROM clause.
-- Use in FROM clause of BQ5

-- X1 is an alias name that can be referenced in the outer query

(SELECT W_SUB_JOB_F.JOB_ID,

 MAX(actual_ship_Date) AS Last_Shipment_Date,

 SUM (actual_Quantity) AS SumDelayShipQty

 FROM W_JOB_SHIPMENT_F, W_SUB_JOB_F, W_Job_F

 WHERE W_SUB_JOB_F.SUB_JOB_ID = W_JOB_SHIPMENT_F.SUB_JOB_ID

 AND W_Job_F.Job_Id = W_SUB_JOB_F.JOB_ID

 AND Actual_Ship_Date > Date_Promised

 GROUP BY W_SUB_JOB_F.JOB_ID

) X1
-- Use in FROM clause of BQ6

-- X1 is an alias name that can be referenced in the outer query

(SELECT W_SUB_JOB_F.JOB_ID, MIN(Actual_Ship_Date) as FirstShipDate

 FROM W_JOB_SHIPMENT_F, W_SUB_JOB_F

 WHERE W_SUB_JOB_F.SUB_JOB_ID = W_JOB_SHIPMENT_F.SUB_JOB_ID

 GROUP BY W_SUB_JOB_F.JOB_ID

) X1
To calculate the difference in business days in the base queries for contractual delays (BQ5 and BQ6), you should use the getBusDaysDiff function as shown in Appendix A. You can use this function to calculate the difference in business days between two-time identifier values. After compiling this function, you can use it in a SELECT statement just like you use Oracle built-in functions. Without this function, calculating the difference in business days involves much more complex SQL coding.
To assist with formulation of analytic queries, you should create views (not materialized views) for the queries involving revenue summary, cost summary, date promised delays, and shipped by date delays. You can use these views just like base tables in queries for analytic functions.
Queries involving Analytic Functions
The base queries can be used in many queries involving analytic functions. This assignment involves a small subset of possible analytic queries using the base queries. In some analytic queries, you should extend base queries with analytic functions. In other analytic queries, you should use a view in the FROM clause instead of directly extending base queries.
Analytic queries involving customer revenue trends

You should write two analytic queries extending the base query for job revenue trends as summarized in Table 2. Both analytic queries involve window comparisons.
Table 2: Analytic Query Requirements for Location Quantity Trends
	Analytic Query
	Analytic Functions
	Other Columns
	Notes

	AQ1: Cumulative amount for locations
	Cumulative sum of amount ordered; Restart cumulative sum by location name and year; Use contract month as the ordering criteria; cumulative sum involves current row and all preceding rows
	Location name, contract year, contract month, sum of job amount ordered
	Extends location/sales class summary (BQ1)

	AQ2: Moving average of average amount ordered for locations
	Moving average of average amount ordered; Restart moving average by location name; Use combination of contract year and month as the ordering criteria; moving average of current row and 11 preceding rows
	Location name, contract year, contract month, average of job amount ordered
	Extends location/sales class summary (BQ1)

Analytic queries involving revenue and cost summaries

These analytic queries involve computed columns using the results of base queries for revenues/costs. Profit involves sum of revenues from invoices minus sum of total costs from subjobs. Total costs are the sum of labor, material, machine, and overhead. The base query for cost summary calculates the sum of each cost component so total costs is the sum of the component costs. Profit margin is sum of profit divided by sum of revenues. Profit margin is a widely used business measure for comparing business performance across different kinds of products.
Table 2: Analytic Query Requirements for Location Revenue Trends
	Analytic Query
	Analytic Functions
	Other Columns
	Notes

	AQ3: Rank locations by descending sum of annual profit
	Rank in descending order of annual sum of profit; Restart ranks for each year
	Location name, contract year, sum of profit
	Use views for BQ2 and BQ3 in the FROM clause; Sum of profit calculated as sum of invoice amount minus sum of total costs (labor, material, machine, and overhead)

	AQ4: Rank locations by descending annual profit margin
	Rank in descending order of annual profit margin; Restart ranks for each year
	Location name, contract year, profit margin
	Use views for BQ2 and BQ3 in the FROM clause; Profit margin calculated as annual sum of profit divided by annual sum of invoice amount;

See AQ3 for calculation of sum of profit

	AQ5: Percent rank of job profit margins for locations
	Percent rank of profit margin for jobs; Use all jobs so no restarting of percent ranks
	Job id, location name, contract year, contract month, profit margin
	Use views for BQ2 and BQ3 in the FROM clause;

See AQ4 for calculation of profit margin

	AQ6: Top performers of percent rank of job profit margins for locations
	Percent rank of profit margin for jobs; Use all jobs so no restarting of percent ranks
	Job id, location name, contract year, contract month, profit margin
	Refinement of AQ5 to show only top 5% of job profit margins; Use AQ5 in the FROM clause

These analytic queries are difficult because they involve two base queries. To simplify formulation, you should use views in the FROM clause, not the base queries.

Analytic queries involving returns
The analytic queries for returns extend the base queries for returns. The focus on both queries is sales class, not location.
Table 4: Analytic Query Requirements for Return Summaries
	Analytic Query
	Analytic Functions
	Other Columns
	Notes

	AQ7: Rank sales class by return quantities for each year
	Rank in descending order of sum of return quantity; Restart ranks for each year of the date sent year
	Sales class description, year of date sent, sum of return quantity
	Extends return summary (BQ4)

	AQ8: Ratio to report of return quantities for sales classes by year
	Ratio to report of sum of return quantity; Restart ratios for each date sent year
	Sales class description, year of date sent, sum of return quantity
	Extends return summary (BQ4); order by year and return quantity

Analytic queries involving contractual delays
The analytic queries for contractual delays rank locations by descending values of delay measures. The promised date in a job indicates the date by which all shipments should occur. The shipped by date in a job indicates the date by which the first shipment should occur. To simplify formulation, you should use views in the FROM clause, not the base queries. In AQ10, the delay rate is calculated as SUM(Quantity_Ordered - SumDelayShipQty) / SUM(Quantity_Ordered) assuming that the view for BQ5 contains the computed column SumDelayShipQty.
Table 5: Analytic Query Requirements for Contractual Delay Summaries
	Analytic Query
	Analytic Functions
	Other Columns
	Notes

	AQ9: Rank locations by sum of business days delayed for the job shipped by date (first shipment)
	Rank in descending order of sum of business days delayed; Use both ranking functions; Restart rankings on year of shipped by date
	Location name, year of date shipped, sum of difference in business days
	Use view for shipped date delays (BQ6); view should only contain delayed jobs

	AQ10: Rank locations by delay rate for jobs delayed on the last shipment date
	Rank in descending order of delay rate; Restart rankings on year of date promised
	Location name, year of date promised, count of delayed jobs, sum of difference in business days
	Use view for last promised date delays (BQ5); view should only contain delayed jobs

Grading

Your performance on parts 1 and 2 will be assessed by evidence of writing and executing SQL statements. You should execute your statements using the production data warehouse tables in my account. I will provide synonym permission to my tables, so you can reference my tables without my schema name (mmannino). To create these synonyms, you should not have tables with the same names in your account.
You will receive 100% if your documentation contains correct SQL statements and results for each problem. Execution of your SQL statements demonstrates correct syntax. For correct semantics or meaning, each statement should involve correct answers to the query formulation questions. For analytic query questions, your statements should have specified analytic function(s) with necessary elements for ordering criteria, partitioning, and window comparisons.
Completion

You should upload a document to the dropbox for part 3 of the case study. The document should contain your Oracle SQL statements and execution results for parts 1 (base queries) and 2 (analytic queries), respectively. The first part of the document contains 6 base queries with their executions. The second part contains 10 analytical queries with their executions. For the execution results, you should take a snapshot of the script output window in SQL Developer showing the execution results. You should paste the execution results after the associated SQL statement. To facilitate grading, you should neatly format your document specially to label the problem numbers for each SQL statement and snapshot. Please use LastnameFirstNameCSP3 as a prefix file name for your document.
Appendix A: getBusDaysDiff Function
The getBusDaysDiff function calculates the difference in business days using two time identifiers. Note that the first time id parameter must by greater than the second time id parameter. After you compile the function using the Run Script button, you can use it in a SELECT statement just like any other function.
create or replace function getBusDaysDiff
(

-- Time_Id parameters

time_ID1 number,
time_ID2 number

-- time_id1 must be greater than time_id2

)

return number

IS

v_timne_ID1 integer;

v_timne_ID2 integer;

transTimeID integer;

difference integer;

Begin

v_timne_ID1 := time_ID1;

v_timne_ID2 := time_ID2;

if (v_timne_ID1 = v_timne_ID2) then

return 0;

elsif (v_timne_ID1 > v_timne_ID2) then

transTimeID := v_timne_ID1;

v_timne_ID1 := v_timne_ID2;

v_timne_ID2 := transTimeID;

end if;

 execute immediate ' select count(*) from w_time_D where time_ID <= ' || v_timne_ID2 ||' and time_ID > ' || v_timne_ID1 into difference ;

 if (difference = '' or difference is null)then

 raise_application_error(-20011, ' An error occurred calculating the difference');

 else

 return difference ;

 end if;

END;
-- Example SELECT statement using the function

SELECT Job_Id, Contract_Date, Date_Ship_By,

 getBusDaysDiff(Date_Ship_By, Contract_Date) AS BusDaysDiff

 FROM W_Job_F

 WHERE getBusDaysDiff(Date_Ship_By, Contract_Date) > 25;

