1/5/2018
Case Study Part 2 Assignment
Page 7

Case Study Part 2 Assignment

The assignment for part 2 of the case study extends your learning experience from units 6 and 7 with new Pentaho features and transformation concepts. You will use most of the Pentaho steps and transformation concepts from assignment 4. You will use new steps for adding constants and updating tables. You will extend transformation processing to capture rejected change data in an error log (Table Output step), use a one-sided outer join to delay rejection of non-matching rows, use the Oracle pseudo column RowNum in SELECT statements, and use output steps (Insert/Update and Update) to check referential integrity rather than a merge join step. In addition, you will work with a larger amount of change data.
As preparation for this assignment, you should review the guided tutorial about Pentaho Data Integration for Oracle and your graded assignment in unit 7. You should also read the case study documents about data integration background (unit 13) and data warehouse design (unit 12). Since this assignment only uses a subset of the data warehouse, you do not need to have detailed understanding of the unused parts of the data warehouse design.
Since the requirements for this assignment are detailed, you should plan to read the assignment and related background documents carefully. You may want to develop the transformation incrementally for each major requirement. You should use the test data warehouse tables before you apply your transformation to the production data warehouse tables.
Validation Requirements
Your Pentaho transformation should perform five types of validation. Change rows should be rejected for each violation of a validation rule.
· Null values: reject any column except the primary key (Change_Id) for null values. You do not need to perform a null value check on the primary key column.

· Foreign key references: reject invalid foreign key references for location (Location_Id), customer (Customer_Id_Ordered_By), sales agent (Sales_Agent_Id), and sales class (Sales_Class_Id).

· Date references: reject invalid dates in date columns (Contract_Date, Date_Promised, Date_Shipped_By). The dates are stored as text in the job change data table with a format of yyyy-mm-dd. The combination of month, day, and year should be a valid date that exists in the W_Time_D table. Note that invalid date and foreign key references will be captured in the same error log step as explained in the section about using the Insert/Update step.
· Business day differences: reject a job change row if differences between dates do not satisfy difference constraints. Since this constraint involves differences in business days, the difference is computed by subtracting row numbers associated with Time_Id values in the W_Time_D table. Note that you cannot just subtract the Time_Id values because of the business day requirements. The Additional Tips section provides background about retrieving row numbers.
· The row number of the Date_Promised must be between 14 and 30 days after the row number of the Contract_Date.
· The row number of the Date_Ship_By must 2 to 7 days before the row number of the Date_Promised.

· You will need a Calculator step to compute the difference in days after retrieving row number values associated with each date column in the job change data table.

· Note that the time dimension table contains a custom calendar with only working days, not weekends. Holidays, if falling on week days, are included in the time dimension table, however. Note, that you cannot use a date difference function to calculate the difference in days because the constraint involves differences in work days, not just the difference in days.

· Lead validation: The Lead_Id in the job change data table must exist in the W_Lead_F table. In addition, the Created_Date in the W_Lead_F table should be chronologically before the Contract_Date in the job change data table. This validation checking occurs after inserting a row into the W_Job_F table. The other validation rules are checked either before or during the insertion into the W_Job_F table.
Inserting into the Job Fact Table and Updating the Lead Fact Table

You should use the Insert/Update step to insert a row into the W_Job_F table. You should use an Oracle sequence object to generate the primary key of the W_Job_F table using an Add Sequence step before the Insert/Update step. An item in the Additional Tips section explains the usage of the Insert/Update step.
You should use the Insert/Update step to check foreign key errors for location (Location_Id), customer (Customer_Id_Ordered_By), sales agent (Sales_Agent_Id), and sales class (Sales_Class_Id), as well as the Time_Id values associated with the date columns. Since the merge join step does not provide error flows, you cannot use the merge join step to check foreign key errors. The merge join step will reject non-matching rows, but it does not allow non matching rows to be sent to another step for error processing.
To update the W_Lead_F table, you should use the Update step, not the Insert/Update step. Although you did not use the Update step in unit 6, it is like the Insert/Update step. You should update the W_Lead_F table after inserting a row into the W_Job_F table. If the validation in the Update step succeeds, you need to update the Job_Id and Success columns of the W_Lead_F table. The Job_Id should be assigned the generated Job_Id in the stream. The Success column should be set to “Y”.
Rejected rows will not update the W_Lead_F table. However, after inserting a row into the W_Job_F table, a validation error may occur when updating the W_Lead_F table. There is no way to avoid this anomalous situation in which a row is inserted into the job fact table, but the associated lead fact table row is not updated.
Error Log Insertion
If a row in the job change data table fails a validation rule, a row must be inserted into the error log table. For all validation errors, the change row should contain the generated Log_Id, Change_Id of the rejected row, and an error message (Note column) indicating the reason for rejection. For errors related to updating the W_Lead_F table, the error log should contain the Job_Id of the related W_Job_F row. The Log_Id value should be generated by an Oracle sequence and available in the stream. Table 1 summarizes error handling using the error log.
Table 1: Error Handling using the W_Error_Log Table

	Type of Error
	Columns
	Comments

	Null value errors
	Change_Id, Note
	Log_Id generated using a sequence. Job_Id is null in the error log row.

	Date difference errors
	Change_Id, Note
	Log_Id generated using a sequence. Job_Id is null in the error log row.

	Foreign key errors including date FKs
	Change_Id, Note
	Log_Id generated using a sequence. Job_Id is null in the error log row.

	Lead update errors
	Change_Id, Job_Id, Note
	Log_Id generated using a sequence. Job_Id should come from the stream.

You send a rejected row to another step in Filter Rows, Insert/Update, and Update steps. The Merge Join step does not have a feature for rejecting rows. In a Filter Rows step, you should send false data to another step to insert rows into the W_Error_Log table. In Insert/Update and Update steps, you specify error handling using the Define Error Handling item (right click on the step and select this item near the bottom of the item list).
To facilitate error messages in the error log table, you should create an “Add constants” step in the initial steps of the transformation. You need to assign values to constants for error messages and the Success column in the W_Lead_F table. You need to specify the data type for each constant field in the step. You should create separate fields in the “Add constants” step for each type of validation error: invalid foreign key errors, invalid date differences, null value errors, and lead table errors.

Additional Tips
Here are some additional tips to help you complete the assignment. The transformation involves some new features not used in assignment 4.
· To insert rows in the job fact table (W_Job_F), you should use an Insert/Update step. The Table Output step, although conceptually more appropriate, will not work due to an Oracle driver limitation. The Oracle driver does not permit an error flow for the Table Output step. For the lookup part of the Insert/Update step, you should compare on Job_Id alone. You still need a preceding Add Sequence step to generate sequence values for Job_Id.
· To insert rows in the error log (W_Error_Log), you should use Table Output steps since you do not need an error flow. For each Table Output step, you need to indicate the target table to insert and a field mapping from the stream to the target table. For the mapping, you can start with the mapping generated by Pentaho by using the Guess button in the Enter Mapping window. You still need a preceding Add Sequence step to generate sequence values for the primary key of the error log table.
· You should have four Table Output steps for inserting rows into the error log. The Table Output steps for the error log should follow Filter Rows steps (one for null value checking and one for date difference checking), Insert/Update step (for foreign key errors including invalid dates), and Update step for Lead validation errors).

· To validate a date, you need to parse the text into year, month, and day components using a Split Fields step. These components should be used to find a matching row in the W_Time_D table in Merge Join steps.
· You need a separate Table Input step to retrieve the W_Time_D table for each date column. Each step should retrieve the Time_Id, Time_Year, Time_Month, and Time_Day columns along with the RowNum pseudo column. For example, the SELECT statement in the Table Input step for the contract date can be written as SELECT Time_Id, Time_Year, Time_Month, Time_Day, RowNum AS ContractRow FROM W_TIME_D. RowNum is not a column in the W_Time_D table. Rather, RowNum is the Oracle pseudo column. The AS keyword renames RowNum in the stream so it is easier to reference in subsequent parts of the transformation.
· In each Filter Rows step, you should click the UP button before creating the next condition. Using the UP button keeps the conditions at the same level without nesting.
· For merge join steps on the time dimension (W_Time_D), you should use a one-sided outer join to preserve all rows in the job change data table. The one-sided outer join preserves all rows from one table, both matching (normal join) and non-matching (unique to the outer join). In a one-sided outer join, you must specify the preserved table. You need to preserve the job change data table in each merge join, not the W_Time_D table. Non matching rows will have a null value for Time_Id in the result.
· Pentaho has two choices for the one-sided outer join, left outer join and right outer join. You can use either option, but you must choose the preserved table correctly for both options. If using the left outer join, the preserved table is the first step in the join specification. For the right outer join, the preserved table is the second step in the join specification.
· It is possible that the transformation may generate an error while running, even if everything is connected properly. This error could be due to a synchronization issue concerning the timing of when new paths begin. If this happens, try running the transformation again. Note that it may be necessary to restore the Oracle tables to their original state.
· Be sure to click the Commit Changes button in Oracle. Otherwise, the transformation will not read the changes if you re-execute the transformation.
Submission
You should take screen snapshots of the complete transform design pane and the step metrics tab showing the execution details for each step in your transformation especially for the Error Log, Job Fact, and Lead tables. You should submit one pair of snapshots for the test data warehouse tables and a second pair for the production data warehouse tables. You should copy both pairs of snapshots into a document with labels to identify the snapshots for the test and production data warehouse tables. You should also submit the .ktr files for your test data warehouse and production data warehouse transformations. Please use LastnameFirstNameCSP2 as a prefix file name for your document.

